

Dynamische Tarife und Netzentgelte in der aktuellen Debatte

Ein Überblick aus aktuellen Veröffentlichungen

Präsentation zum Webinar vom 16.07.2024

Dynamische Tarife und Netzentgelte in der aktuellen Debatte

Ein Überblick aus aktuellen Veröffentlichungen 16.07.2024, Berlin / online

Alexander R. D. Müller
Teamleiter Energieinfrastruktur, dena

Aktuell gibt es eine Vielzahl von Veröffentlichungen rund um das Themenfeld, z.B.:

Fraunhofer

consentec

Guidehouse

Karoline Steinbacher

Im Auftrag des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK)

Agora Energiewende/FfE Guid

Neon Neue Energieökonomik (1)

Neon Neue Energieökonomik (2)

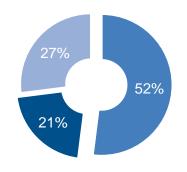
Fraunhofer IEG, ISI

Stiftung Umweltenergierecht

Fraunhofer IEE

Jüngst hat die *dena* gemeinsame mit Consentec eine Grundlagenanalyse veröffentlicht.

- Sortierung von Begrifflichkeiten
- Warum sollten Strompreisbestandteile überhaupt variabilisiert bzw. dynamisiert werden?
- Wechselwirkungen und Koordinationsbedarf
- Mögliche Modelle und ihre technischen Voraussetzungen


Gutachten der Consentec GmbH mit Einordnung der dena

→ Zum Bericht

Vorbemerkung: "Dynamische" Tarife setzen Anreize, den Verbrauch zeitlich zu verschieben.

- Energiepreis
- Netzentgelt
- Staatlich veranlasste Preisbestandteile

Einsatz von Flexibilität

Marktorientiert

Unterstützung zur Aufrechterhaltung einer ausgeglichenen Leistungsbilanz im gesamten Stromversorgungssystem
→ Energiepreis

Netzorientiert

Beitrag zum Erhalt eines störungsfreien Netzbetriebs zur Vermeidung von Engpässen Netzentgelt

AGENDA

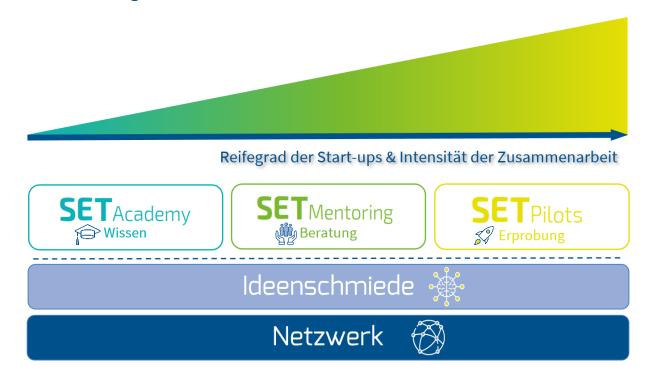
14:00 Uhr	Begrüßung und Einführung Alexander R. D. Müller, dena	
Block I: Überblick über dynamische Tarife und Aspekte systemischer Auswirkungen		
14:10 Uhr	Zielwirkungen, Ausgestaltungsmöglichkeiten und technische Voraussetzungen Dr. Wolfgang Fritz & Anna Weiß, Consentec	
14:25 Uhr	Systemrisiken durch dynamische Tarife – Reales Risiko oder unbegründete Sorge? Philipp Creutzburg, Guidehouse	
14:40 Uhr	Q&A Session Block I	
	Block II: Tarifausgestaltung	
14:45 Uhr	Stromtarife für Preissicherheit und Flexibilität – Ausgestaltung eines dynamischen Tarifs mit Preisabsicherung Dr. Ingmar Schlecht, Neon Neue Energieökonomik	
15:00 Uhr	Q&A Session Block II	

Block III: Systemischer Nutzen dyn. Tarife und Auswirkungen auf das Verteilnetz		
15:05 Uhr	Mehrwert dezentraler Flexibilität – Oder: Was kostet die verschleppte Flexibilisierung von Wärmepumpen, Elektroautos und Heimspeichern? Dr. Anselm Eicke, Neon Neue Energieökonomik	
15:20 Uhr	Haushaltsnahe Flexibilitäten nutzen – Wie Elektrofahrzeuge, Wärmepumpen und Co. die Stromkosten für alle senken können Philipp Godron, Agora Energiewende Niklas Jooß, Forschungsstelle für Energiewirtschaft e.V. (FfE)	
15:35 Uhr	Q&A Session Block III	
Block IV: Abschlussstatements		
15:40 Uhr	Reaktionen & Abschlussstatements der Referierenden	
16:00 Uhr	Ende der Veranstaltung	

Fragen stellen: Nutzung des Online-Tools Slido

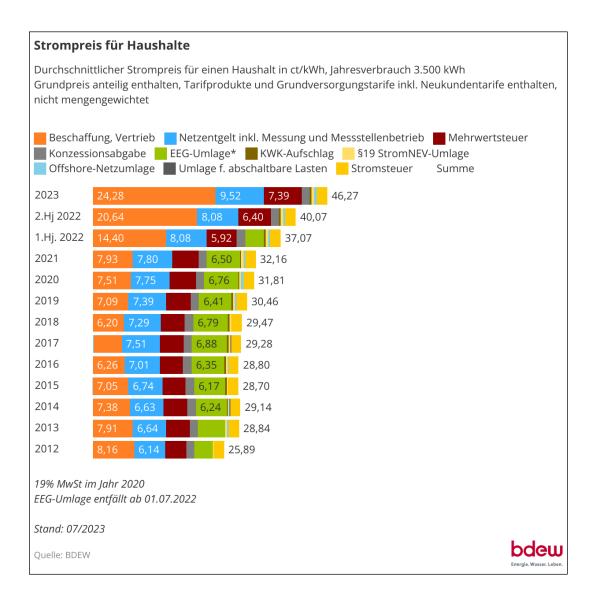
- Fragen können über das das Online-Tool Slido gestellt werden
- Favorisierung der Fragen mittels Likes im Online-Tool Slido
- In der Q&A Session jedes Themenblocks werden die Fragen an die Referierenden gestellt, welche die meisten Likes erhalten haben

Link zum Online-Tool Slido:* https://app.sli.do/event/72NE7gd6z3UWgypVwTgahp



^{*} Link zum Online-Tool Slido auch im Zoom-Chat.

SET Hub Projekte



Strompreisbestandteile und deren Eignung für zeitvariable Preissignale

Gut geeignet für zeitvariable Gestaltung:

- Preis für Beschaffung und Vertrieb (im Weiteren "Energiepreis")
- Netzentgelt (v.a. Arbeitspreis)

Übrige Preisbestandteile kommen hierfür weniger in Frage, v.a. weil

- Berechnungsgrundlage nicht oder nur schwer anpassbar ist und/oder
- Preisanteil zu gering ist

Stromverbraucher können durch zeitvariable/dynamische Strompreise an Mechanismen der Flexibilitätsnutzung beteiligt werden

Flexibilität kann für unterschiedliche Zwecke genutzt werden **Eigenverbrauchsorientiert** Netzorientiert Marktorientiert (Individuelles oder kollektives (Gemeinschaftsinteresse (Gemeinschaftsinteresse mit Ortsbezug) ohne Ortsbezug) Eigeninteresse) Kuratives oder präventives Ausrichtung des Verbrauchs Maximierung des Eigenverbrauchs von selbst am Kurzfrist-Strommarkt Netzengpassmanagement erzeugtem Strom (mitunter auch zur Reduk-(und damit am EE-Angebot) tion von EE-Abregelungen) Individuell oder kollektiv Bilanzkreisausgleich (→ Energiegemeinschaft) Langfristig Dämpfung des Regelleistungseinsatz **Netzausbaubedarfs Systemorientiert** (schließt zusätzlich auch andere Versorgungssparten ein)

Hinweis: Die Begriffe netz-, markt- und systemorientiert werden nicht immer einheitlich verwendet. Diese Begriffswahl beruht auf einem Vorschlag der dena.

Überblick über Unterscheidungsmerkmale von Modellen für zeitvariable/dynamische Strompreisbestandteile

Unterscheidungsmerkmal	Erläuterung
Variierter Preisbestandteil	Energiepreis oder Netzentgelt
Treiber/Basis der Preisfestlegung	Motivation und Einflussgrößen für die Ermittlung des Preisverlaufs
Adressierte Letztverbrauchergruppen	Eventuelle Fokussierung nach Größe und Art von Verbrauchern
Messtechnische Voraussetzungen	Konventionelle, moderne oder intelligente Messeinrichtungen
Variierte Netzentgeltkomponente	(Nur bei Netzentgelten:) Arbeits- und/oder Leistungspreis
Zeitliche und preisliche Granularität	Länge der Zeiträume mit jeweils gleichbleibenden Preisen
Frist zur Festlegung des Preisverlaufs	Vorlaufzeit der endgültigen Festlegung der Preise (oder Zeitfenster)
Örtliche Granularität	Art/Ausmaß der Abhängigkeit vom Ort des Netzanschlusspunkts
Absicherung gegen Preisschwankungen	Eventuelle Mechanismen zur Begrenzung von Preisausschlägen

Überblick über Unterscheidungsmerkmale von Modellen für zeitvariable/dynamische Strompreisbestandteile

Unterscheidungsmerkmal	Erläuterung
Variierter Preisbestandteil	Energiepreis oder Netzentgelt
Treiber/Basis der Preisfestlegung	Motivation und Einflussgrößen für die Ermittlung des Preisverlaufs
Adressierte Letztverbrauchergruppen	Eventuelle Fokussierung nach Größe und Art von Verbrauchern
Messtechnische Voraussetzungen	Konventionelle, moderne oder intelligente Messeinrichtungen
Variierte Netzentgeltkomponente	(Nur bei Netzentgelten:) Arbeits- und/oder Leistungspreis
Zeitliche und preisliche Granularität	Länge der Zeiträume mit jeweils gleichbleibenden Preisen
Frist zur Festlegung des Preisverlaufs	Vorlaufzeit der endgültigen Festlegung der Preise (oder Zeitfenster)
Örtliche Granularität	Art/Ausmaß der Abhängigkeit vom Ort des Netzanschlusspunkts
Absicherung gegen Preisschwankungen	Eventuelle Mechanismen zur Begrenzung von Preisausschlägen

- \rightarrow Je höher die zeitliche und preisliche Granularität, desto höher die Zielgenauigkeit des Modells
- → Gleichzeitig steigen hierdurch auch die Anforderungen an die Messtechnik sowie die **kundenseitige Absicherung**

Überblick über verschiedene Zählerkonzepte und deren Eignung für zeitvariable/dynamische Strompreismodelle

	Eintarifzähler	Mehrtarifzähler	Moderne Messeinrichtung + Verbrauchstracker	Intelligentes Messsystem
Zählwerk	Mechanisch		Dig	ital
Granularität der Messung	Erfassung des Summen- verbrauchs zwischen zwei Ablesungen	Erfassung des Verbrauchs für vorab definierte Zeitfenster	Friassling des Vernralichs in Echtzeit lind Ermittiling V	
Kommunikation	Manuelle Erfassung und Meldung an den Versorger		Kontinuierliche, automati- sierte Übermittlung über Internet an den Versorger	Kontinuierliche, automatisierte Übermittlung über Smart Meter Gateway an den Messstellenbetreiber
Abrechnung gegenüber dem Versorger	Gesamtverbrauch inner- halb des Preiszeitraums (Monat/Saison/Jahr)	Gesamtverbrauch inner- halb des Preiszeitraums (Preisstufen)	Tatsächlicher Verbrauch in festgelegten Intervallen (z.B stündlich)	
Grundlage für energetische Bilanzierung	Standardlastprofile und Mehr-/Mindermengenabrechnung			Tatsächlicher Verbrauch in viertelstündlichen Intervallen
Eignung	Statische Preismodelle oder Preismodelle mit monatlich/saisonal wechselnden Preisen*	Statisch-zeitvariable Preismodelle mit vorab festgelegten Preis- zeitfenstern (z.B. HT/NT)	Dynamische Preismodelle mit kontinuierlichem Preisverlauf	

^{*}Erfordert Ablesung des Zählerstands am Ende jedes Preiszeitraums

Überblick über verschiedene Zählerkonzepte und deren Eignung für zeitvariable/dynamische Strompreismodelle

	Eintarifzähler	Mehrtarifzähler	Moderne Messeinrichtung + Verbrauchstracker	Intelligentes Messsystem
Zählwerk	Mechanisch		Dig	ital
Granularität der Messung	Erfassung des Summen- verbrauchs zwischen zwei Ablesungen	Erfassung des Verbrauchs für vorab definierte Zeitfenster	_	Echtzeit und Ermittlung von denwerten
Kommunikation	Manuelle Erfassung und Meldung an den Versorger		Kontinuierliche, automati- sierte Übermittlung über Internet an den Versorger	Kontinuierliche, automati- sierte Übermittlung über Smart Meter Gateway an den Messstellenbetreiber
Abrechnung gegenüber dem Versorger	Gesamtverbrauch inner- halb des Preiszeitraums (Monat/Saison/Jahr)	Gesamtverbrauch inner- halb des Preiszeitraums (Preisstufen)		estgelegten Intervallen (z.B. dlich)
Grundlage für energetische Bilanzierung	Standardlastprofile und Mehr-/Mindermengenabrechnung			Tatsächlicher Verbrauch in viertelstündlichen Intervallen
Eignung	Statische Preismodelle oder Preismodelle mit monatlich/saisonal wechselnden Preisen*	Statisch-zeitvariable Preismodelle mit vorab festgelegten Preis- zeitfenstern (z.B. HT/NT)	•	lle mit kontinuierlichem erlauf

^{*}Erfordert Ablesung des Zählerstands am Ende jedes Preiszeitraums

consentec

Consentec GmbH Grüner Weg 1 52070 Aachen Deutschland Tel. +49 241 93836-0 Fax +49 241 93836-15 info@consentec.de www.consentec.de

Hintergrund Verpflichtendes Angebot dynamischer Tarife reizt Flexibilisierung auf Haushaltsebene an

Ausgangspunkt

Kleinteilige Flexibilitätsoptionen auf Haushaltsebene stellen perspektivisch ein sehr hohes Flexibilitätspotenzial dar

Komplikation

Verpflichtendes Angebot dynamischer Tarife durch alle Lieferanten zum 1.1.2025 (Gesetz zum Neustart der Digitalisierung der Energiewende)

Flexibilisierung auf Haushaltsebene wird erstmalig umfassend angereizt

Frage

Können – neben den positiven Effekten der Flexibilisierung – durch dynamische Tarife auch **Herausforderungen** aus Systemperspektive entstehen?

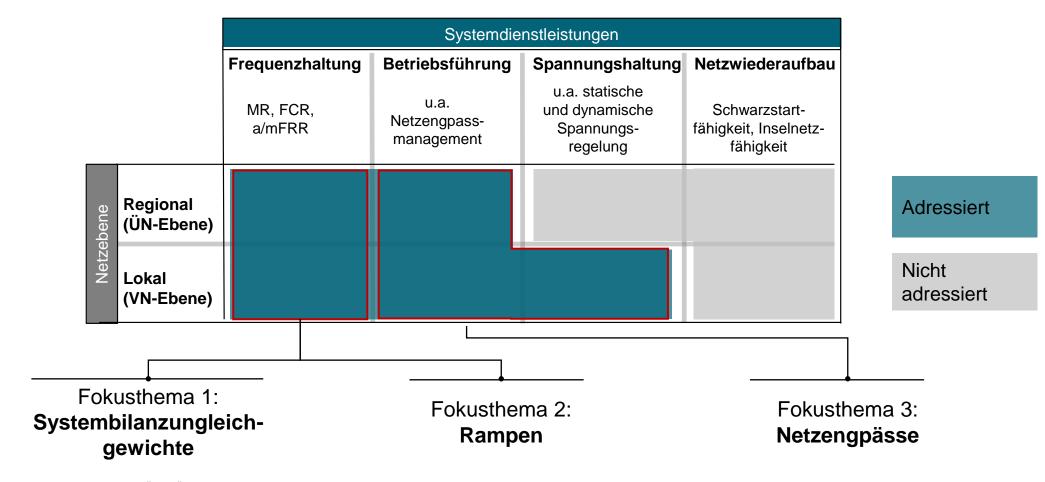
Wenn ja, welche?

Wie sind diese einzuordnen?

Antwort

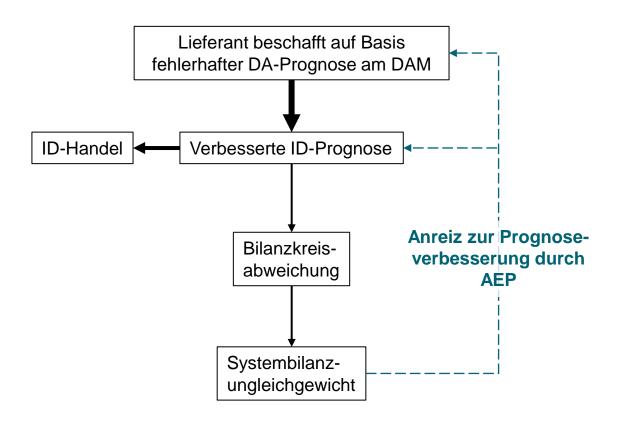
Dynamische Tarife aus Stromsystemperspektive

Workshop und Inputpapier für die AG


Flexibilität der Plattform klimaneutrales Stromsystem

(PKNS) (10/2023)

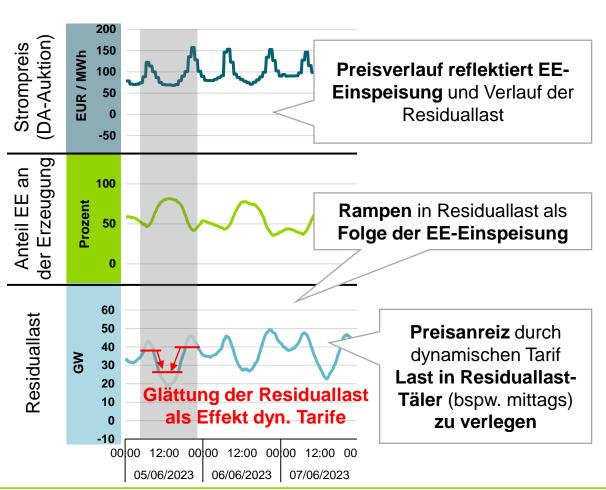
Struktur Drei potenzielle Herausforderungen für die Systemsicherheit wurden identifiziert und analysiert



ÜN – Übertragungsnetz, VN – Verteilnetz, MR – Momentanreserve, FCR/aFRR/mFRR – Primär-, Sekundär-, Minutenregelleistung

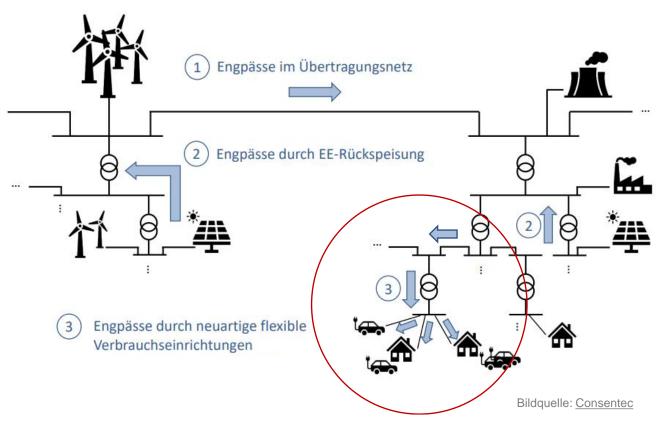
Ergebnis Der Ausgleichsenergiepreis setzt starke Anreize Bilanzungleichgewichte zu verhindern

	Fokusthema 1: Systembilanz- ungleichgewichte
Voraussetzungen:	 Hohe flexible Leistung, die auf dyn. Tarife synchron reagiert
	Geringe Prognosegüte
Einordnung:	 Prognosegüte entscheidend Lerneffekte erwartbar
Umgang mit	Wirkung beobachten
Risiken:	Anreize (AEP) vorhandenSteuerung flexibler Anlagen nicht notwendig



DA – Day-ahead, DAM – DA-Markt, ID – Intraday, AEP - Ausgleichsenergiepreis

Ergebnis Dynamische Tarife wirken glättend auf Residuallastkurve, aber Ausnahmen möglich


	Fokusthema 2: Rampen
Voraussetzungen:	 Hohe flexible Leistung, die auf dyn. Tarife synchron reagiert
	Extremsituationen
Einordnung:	 Glättung der Residuallastkurve erwartbar Rampen bereits von Erzeugung bekannt
Umgang mit	Wirkung beobachten
Risiken:	 Instrumente für Erzeugungs- /Lastrampen zukünftig denkbar

Ergebnis Netzengpässe im Verteilnetz können durch verschiedene Instrumente adressiert werden

	Fokusthema 3: Netzengpässe
Voraussetzungen:	Wenige flexible Lasten ausreichend (lokale Ebene)
Einordnung:	 Spannungsbedingte Engpässe bekannt von PV und (begrenzt) von EVs Wenige flexible Lasten ausreichend
Umgang mit	Wirkung beobachten
Risiken:	 Instrumente vorhanden (14a, dyn. Netzentgelte)

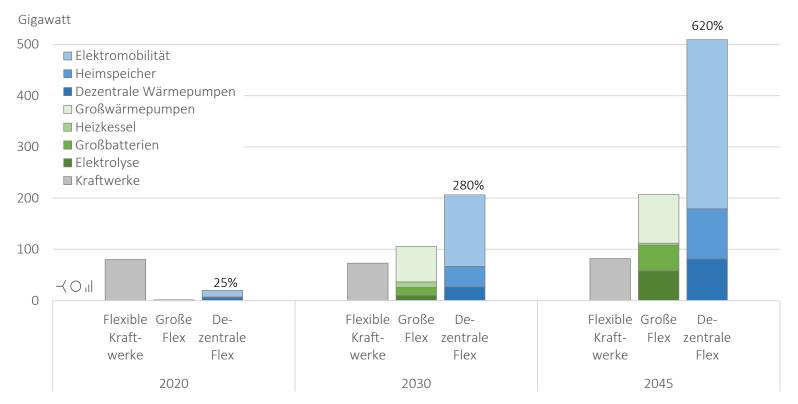
Philipp Creutzburg Managing Consultant philipp.creutzburg@guidehouse.com

Karoline Steinbacher Associate Director karoline.steinbacher@guidehouse.com

> Christian Nabe Associate Director christian.nabe@guidehouse.com

Thank You

©2024 Guidehouse Inc. All rights reserved. Proprietary and competition sensitive. This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.


Stromtarife für Preissicherheit *und* Flexibilität

Ingmar Schlecht · dena Webinar · 16.7.2024

Die essenzielle Rolle lastseitiger Flexibilität

Installierte flexible Leistung bei Erzeugung und Verbrauch

Installierte Leistung verschiedener potenziell flexibler Technologien heute und in der Zukunft. Dezentrale Flexibilität bezieht sich auf Anschluss in der Niederspannung. Eigene Darstellung auf Basis des BMWK-Langfristszenarios "T45-Strom" (2022) mit eigenen ergänzenden Annahmen.

Dezentrale Flexibilität

Heute: 20 GW

2030 bereits über 200 GW

Zu befürchten

- Hohe Gleichzeitigkeit zu Spitzenlastzeiten
- Immenser Bedarf an Netzen & Kraftwerken

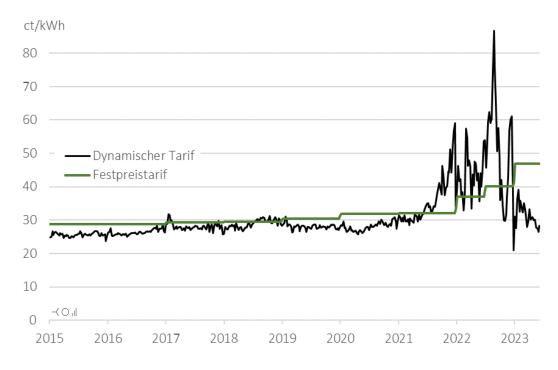
Zu hoffen

 Intelligenter Betrieb mit Flex-Bereitstellung für Markt & Netz

Voraussetzung: Anreize

· Fehlen heute weitgehend

Strom-Tarife für Haushalte


Endkundentarife heute

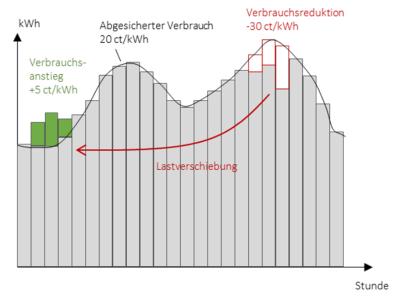
- Festpreistarife
- Spottarife
- wenige Zwischenformen

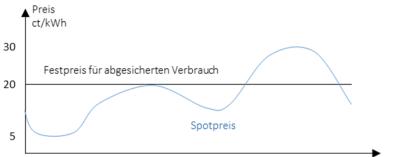
Ziele der Tarifgestaltung

- Anreize für Lastverschiebung ("Flex")
- Anreize für situatives Energiesparen (Dunkelflaute)
- Kostensicherheit (stabile Stromrechnung)

Festpreistarif vs. dynamischer Tarif für Haushaltskunden

Der dynamische Tarif mit Preisabsicherung


Ein abgesicherter Spottarif spezifiziert drei Elemente


- (a) ein jährliches Volumen
- (b) ein stündliches Verbrauchsprofil wie z. B. ein Standardlastprofi
- (c) einen Preis für das vorab definierte Verbrauchsprofil
- Für alle <u>Abweichungen</u> vom vereinbarten Profil gilt der Spotpreis

Unverzerrte Anreize trotz Versicherungswirkung

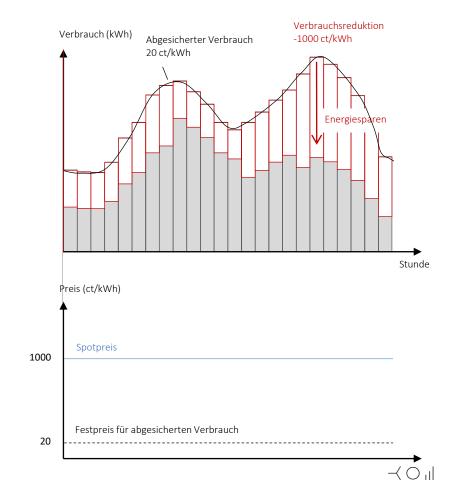
Anreize für Lastverschiebungen

Anreize für Lastverschiebung

Der dynamische Tarif mit Preisabsicherung

Ein abgesicherter Spottarif spezifiziert drei Elemente

- (a) ein jährliches Volumen
- (b) ein stündliches Verbrauchsprofil wie z. B. ein Standardlastprofi
- (c) einen Preis für das vorab definierte Verbrauchsprofil
- Für alle <u>Abweichungen</u> vom vereinbarten Profil gilt der Spotpreis


Unverzerrte Anreize trotz Versicherungswirkung

- Anreize für Lastverschiebungen
- Anreize für situatives Energiesparen

Vorteile von Preisanreiz gegenüber Eingriffsrechten

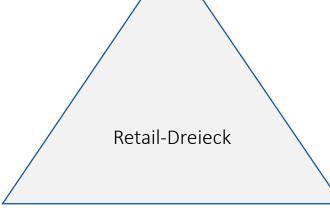
- Erreicht auch situatives Energiesparen Kund:innen profitieren!
- Kann mit über die Zeit variierender Flex-Bereitschaft umgehen

Anreize für situatives Energiesparen

Vertragsdauer und Kündigungsrecht

Zielkonflikt: Wunsch nach Absicherung vs. kurze Kündigungsfristen

- Wunsch nach Absicherung: Strom wird auch in Zukunft verbraucht
- Vermeidung von Lock-in: Schlechte Verträge nicht unendlich lang


Auflösung des Zielkonflikts möglich?

- Staatliches Monopol → Hat viele Nachteile (Innovation, Kosten, etc.)
- Wechselgebühren → Würden für Absicherungsverluste kompensieren

Ausgestaltung von Wechselgebühren

- Kompensiert die Preisentwicklung auf Forward-Märkten zwischen Vertragsabschluss und Kündigung
- Kann in beide Richtungen gehen (Auszahlung an vs. Zahlung des Kunden)
- Müsste reguliert sein: Verbraucherschutz

Wettbewerb Nicht nur ein staatlich regulierter Anbieter

Hedging Langfristige Preisabsicherung Verbraucherschutz Kurze Kündigungsfrist

KURZGUTACHTEN

Stromtarife für Preissicherheit *und* Flexibilität

Ausgestaltung eines dynamischen Tarifs mit Preisabsicherung

21. September 2023

Im Auftrag von LichtBlick SE

Verfasst von Neon Neue Energieökonomik durch die Autoren Lion Hirth (hirth@neon.energy) Ingmar Schlecht (schlecht@neon.energy) Jonathan Mühlenpfordt (muehlenpfordt@neon.energy)

Mehrwert dezentraler Flexibilität Anselm Eicke · 16. Juli 2024

Mehrwert dezentraler Flexibilität

Dezentrale (haushaltsnahe) nachfrageseitige Flexibilität

- Drei Technologien im Fokus: Elektroautos, Heimspeicher, Wärmepumpen
- Flexibel, weil inhärentes Potential zur Lastverschiebung

Ziele dieser Studie: Mehrwert von Flexibilität aufzeigen

- Quantifizierung des Mehrwerts pro Haushalt & volkswirtschaftlich
- Unterscheidung des Mehrwerts für Strommarkt und fürs Verteilnetz
- Vorschläge für Regulierung & Marktdesign

KURZSTUDIE

Mehrwert dezentraler Flexibilität

Oder: Was kostet die verschleppte Flexibilisierung von Wärmepumpen, Elektroautos und Heimspeichern?

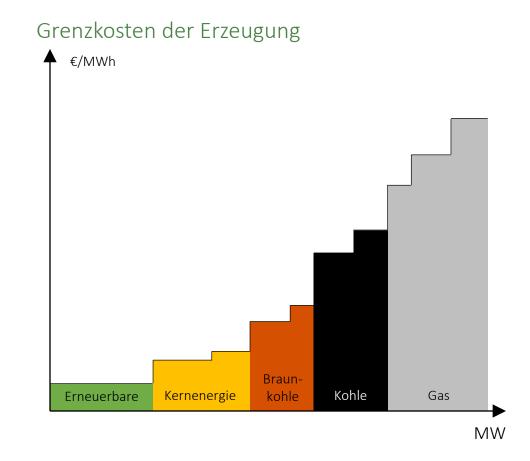
14. März 2024

Im Auftrag des Verbands der Elektro- und Digitalindustrie (ZVEI e.V.)

Anselm Eicke (eicke@neon.energy) Jonathan Mühlenpfordt (muehlenpfordt@neon.energy)

Lastverschiebung im Strommarkt fast immer sinnvoll

Alle Stunden


- Verbrauchsverschiebung in Stunden mit niedrigen Preisen
- Bessere Auslastung von Kraftwerken, weniger Abregelung von erneuerbaren Energien

Stunden der Spitzenlast

 Reduziert Bedarf an gesicherter Leistung, z.B.
 Erzeugungsleistung oder Flex (z.B. Interkonnektoren, Großbatterien)

Strompreis robuster Indikator für Mehrwert von Flex

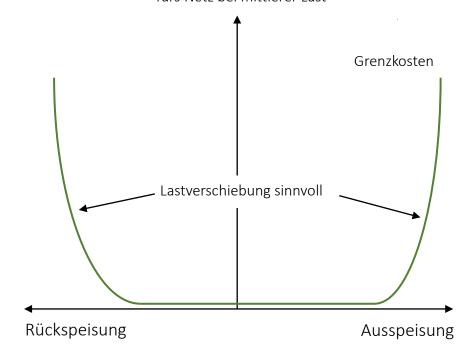
• Gilt für alle Strommärkte (Day-ahead, Intraday, Ausgleichsenergie)

Lastverschiebung fürs Netz nur bei Überlastung

Grenzkosten des Netzes

- In einzelnem Netzelemente: Bei Überlastung Kosten für Netzausbau, sonst nahe Null (Leistungsverluste)
- In größerem Netzgebiet: Grenzkosten steigen mit Wahrscheinlichkeit der Überlastung einzelner Netzelemente

Lastverschiebung nur sinnvoll wenn Netzüberlastung droht


- Sonst kein Mehrwert für Verteilnetz
- Eingriff verhindert Flex für Strommarkt & verursacht Kosten

Kein robustes natürliches Preissignal im Verteilnetz

• ... und unzureichende Messinfrastruktur im Verteilnetz

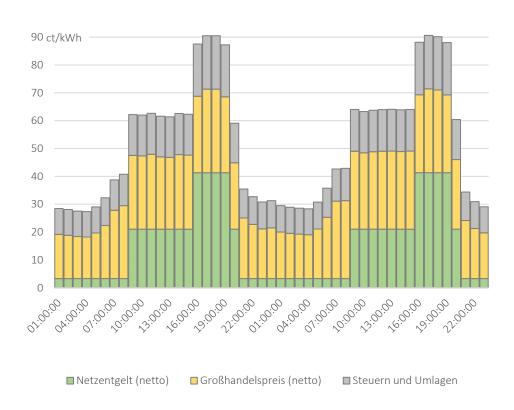
Grenzkosten des Verteilnetzes

Kein Mehrwert durch Lastverschiebung fürs Netz bei mittlerer Last

Unser methodischer Ansatz

Analyse der größten Flex im Haushalt

Wärmepumpe, Elektroauto und Heimspeicher


Vergleich der Betriebsweise unter drei Tarifen

- Festpreis
- Halb-Flex Tarif (Börsenstrompreis + konstante Netzentgelte)
- Voll-Flex-Tarif (Börsenstrompreis + zeitvariable Netzentgelte)

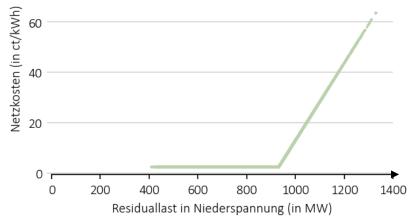
Implementierung: Python-Optimierungsmodell

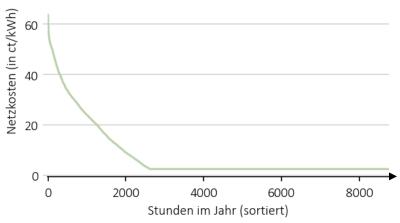
- Stündliche Großhandelspreise und Netzbelastung aus 2021
- Zielfunktion: Minimierung der (privaten) Stromkosten
- Auswertung der Verbrauchsprofile mit Tarifen,
 Börsenstrompreisen und approximierten Netzkosten

Komponenten des Voll-Flex-Tarifs

Abschätzung der zeitvariablen Verteilnetzkosten

Annahmen


- Zeit-Konstante Kosten des Übertragungsnetz (2 ct/kWh) und Leitungsverluste (0,5 ct/kWh)
- Steigende Verteilnetzkosten bei zunehmender (residualer) Netzlast


Resultierende Kostenkurve

- <70% der Höchstlast: Verluste + Übertragungsnetz (2,5 ct/kWh)
- >70% der Höchstlast: linear ansteigende Netzkosten (bis 60 ct/kWh)

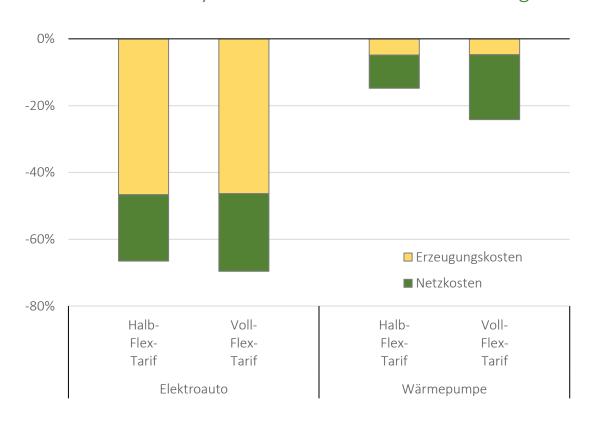
Kalibrierung: Residuallast der Berliner Niederspannung

 Durchschnittliche Netzkosten = aktuelle Netzentgelte für Haushalte (8,2 ct/kWh)

Quantitative Ergebnisse der Studie

Großes Einsparpotential durch Flexibilität

- Stromsystem-Kosten für Wärmepumpen können um 24% gesenkt werden, bei Elektroautos sogar um 70%
- Nicht-Flexibilität ist teuer: Konventionell geladenes EV verursacht mehr als 3x so hohe Kosten wie intelligent geladenes


Vorteile nicht nur für flexiblen Haushalt, sondern für alle

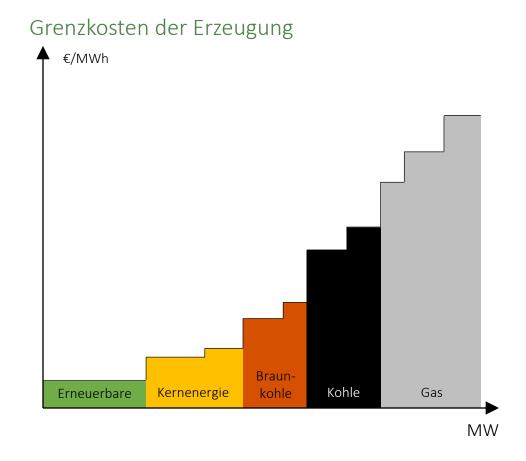
• Niedrigere Strompreise und geringere Netzentgelte

Marktgetriebene Flexibilität entlastet das Verteilnetz

Halb-Flex-Tarif ist aktuell netzdienlich

Reduktion der Systemkosten durch Flexibilisierung

Regulierung und Marktdesign


Lastverschiebung für Strommarkt: Halb-Flex-Tarife

Großhandelspreis an Verbraucher weitergeben

- Preis spiegelt Grenzkosten der Erzeugung
- Sinnvoller Anreiz zur Lastverschiebung für Strommarkt

Umsetzbarkeit

- In vielen Ländern seit langem weit verbreitet ("dynamischer Tarif")
- In Deutschland seit wenigen Jahren verfügbar, aber wegen fehlenden Smart Metern noch wenig verbreitet

Lastverschiebung fürs Netz: viele denkbare Instrumente

Drei wesentliche Ausgestaltungsoptionen

- 1. Freiwilligkeit im Abruf (Eingriffsrecht vs. Preissignal)
- 2. Vorlaufzeit (Jahr, Tage, Stunden oder rückwirkend)
- 3. Präzision der Steuerung (von binär bis kontinuierlich)

Dimensionen unabhängig voneinander kombinierbar

- In der Diskussion oft vermischt
- Diskussion um Eingriffsrecht vs. Preissignal hat beide anderen Aspekte bislang überlagert

Instrument				
Eingriffsrechte	Dimmung ausgewählter Anlagen			
	Abschaltung ausgewählter Anlagen			
	Dimmung des gesamten Haushaltsverbrauchs			
Preisinstrumente	Statisch-zeitvariable Netznutzungsentgelte			
	Dynamisch-zeitvariable Netznutzungsentgelte			
	Critical peak pricing			
	Netzentgelt-Aufschlag bei Netzhöchstlast			
	Situative, kurze Leistungspreise			

1. Freiwilligkeit des Abrufs

Preissignal

- z.B. zeitvariables Netzentgelt
- Verbraucher / Aggregator entscheidet über Verbrauchsanpassung
- Finanzieller Vorteil: im Mittel geringere Netzentgelte

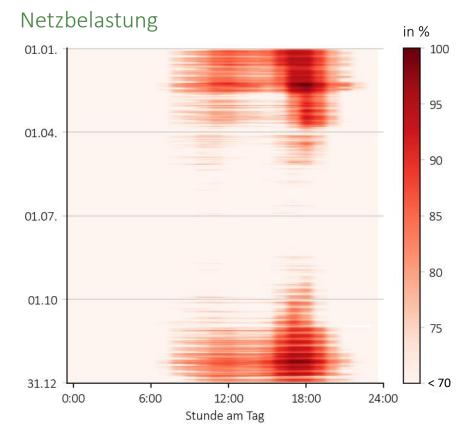
Eingriffsrecht für VNB

- VNB dimmt einzelne Verbraucher oder schaltet diese komplett ab
- Finanzieller Vorteil: pauschale Kompensation, z.B. reduziertes Netzentgelt
- Eingriffsrecht in der Lenkungswirkung äquivalent zu unendlich hohem Netzentgelt

	Eingriffsrecht	Preissignal
Priorisierung der Verbraucher	Alle Verbraucher gleich	Differenzierung der Verbraucher nach Zahlungsbereitschaft
Zusammenspiel von Signalen	Keine Abwägung: Netzsignal überwiegt immer Marktsignal	Wechselwirkung zwischen Preissignalen aus Strommarkt und Verteilnetz
Sicherheit über Lastverschiebung	Hohe Sicherheit	Weniger Sicherheit
Ökonomische Effizienz	Ineffizient (vgl. Steuer vs. Cap-and-trade, aber ohne Handel)	Effiziente Nutzung von Potentialen

2. Vorlaufzeit

Lange Vorlaufzeit (statische Netzentgelte)


- Netzbelastung teilweise kalendarisch determinierbar
- Planbarkeit ermöglicht stärkere Flex-Reaktion (z.B. Vorziehen)

Kurze Vorlaufzeit (dynamische Netzentgelte)

- Wetterbedingte Netzbelastung (EE, Heizen, Kühlen) nur kurzfristig vorhersehbar
- Kurze Vorlaufzeit vermeidet Flex-Einsatz in Zeiten ohne Engpass

Sinnvolle Vorlaufzeit abhängig vom Netzgebiet

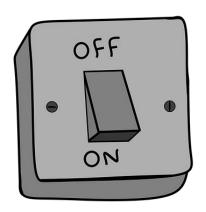
• Empirische Frage: Wie gut lassen sich Überlast-Ereignisse kalendarisch bestimmen?

Berliner Niederspannung, Jahr 2021

3. Präzision der Steuerung

Wie präzise ist Lastreduktion / -erhöhung möglich?

Kontinuum zwischen


- Binär (Sperrzeiten mit Last Abregelung / unendlich hohe Netzentgelte)
- Fein-gestuft (kontinuierliche Dimmung / viele Preisstufen)

Präzise Steuerung "verschmiert" Nachhol- / Vorzugseffekte

• Binäre Steuerung: höhere Gefahr neuer Lastspitzen durch zeitgleichen Einsatz

Bewertung

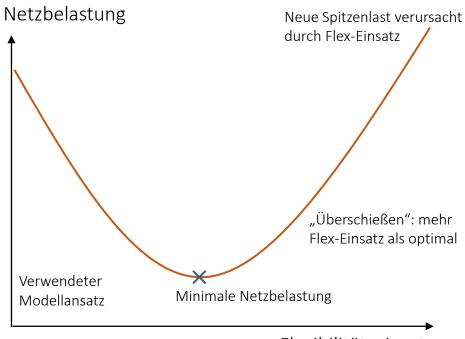
- Begrenzung des Flex-Abrufs aufs Notwendigste wünschenswert
- Nur möglich, wenn Netzzustand (hinreichend) bekannt

Mehrwert dezentraler Flexibilität Anselm Eicke · 16. Juli 2024

Neue Netzbelastung durch Verbrauchskonzentration

Befürchtung: Alle Verbraucher reagieren gleichzeitig

Flex-Einsatz bewirkt neue Netzüberlastung


Grundproblem: fehlende Rückkopplung

- Auslösung durch alle Instrumente, die kein Feedback erlauben
- Netzentgelte, Sperrzeitfenster, day-ahead Großhandelspreise

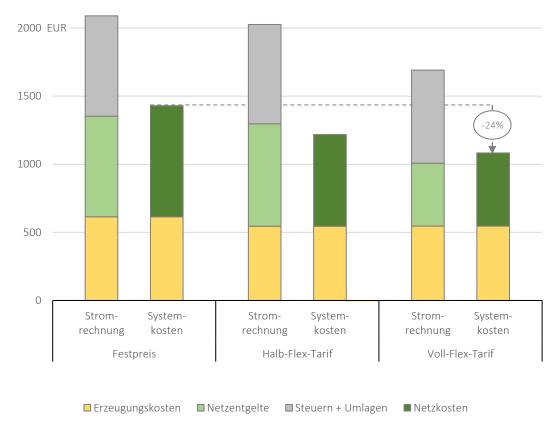
Empirische Frage: Wie stark konzentriert sich der Verbrauch?

- Hängt ab vom Grad der Synchronisierung der Anlagen
- Anlagenkonfiguration, Korrelation der Tagesrhythmen der Verbraucher:innen, Präferenzen hinsichtlich Lastverschiebung, Unterschiedlichkeit der Optimierungsansätze
- Optimierungsmodelle bilden Heterogenität inhärent schlecht ab

Einfluss von Flex auf Netz

Flexibilitätseinsatz

Ergebnis Wärmepumpe


Stromrechnung

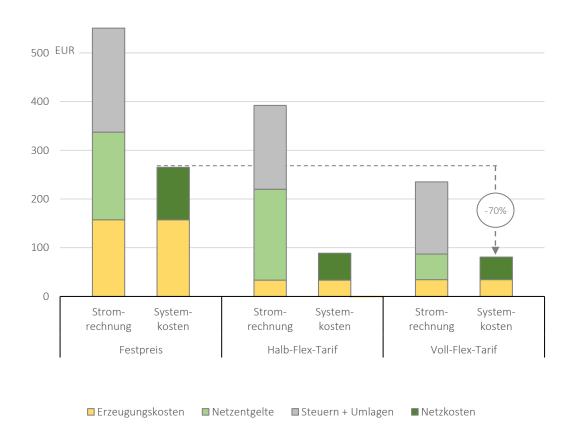
- Reduktion um 3% bei Halb-Flex-Tarif
- Um 19% bei Voll-Flex (knapp 400 EUR p.a.)

Systemnutzen

- Flex-Nutzung verzögert Netzausbau
- Reduziert Stromgestehungskosten
- Systemkosten sinken bei Halb-Flex-Tarif um 15% (212 EUR), bei Voll-Flex sogar um 24% (346 EUR)
- Halb-Flex reduziert auch Netzkosten

Jährliche Stromkosten für Wärmepumpe

Ergebnis Elektroauto


Stromrechnung

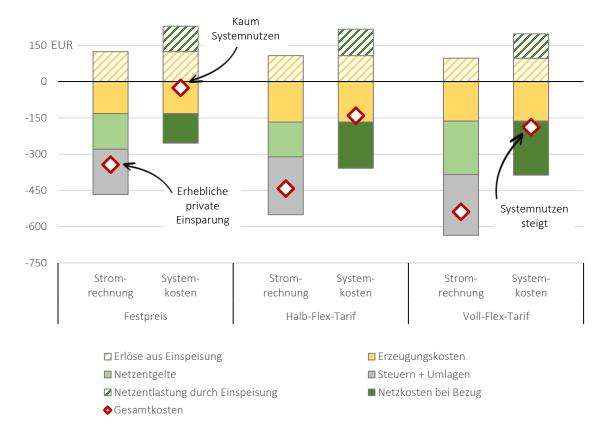
- Sinkt erheblich durch flexible Tarife
- Um 158 EUR (29%) bei Halb-Flex
- Um 316 EUR (43%) Voll-Flex-Tarif

Systemnutzen

- Hoher Nutzen bereits bei Halb-Flex-Tarif
- Erzeugungskosten sinken um 124 EUR, Netzkosten um 53 EUR

Jährliche Stromkosten für Elektroauto

Ergebnis Heimspeicher


Geringer Systemnutzen des Heimspeichers bei Festpreis

- Speicher reduziert Stromrechnung um 343 EUR
- Stromsystem nur um 26 EUR entlastet
- Differenz ist Umverteilung

Flexible Tarife reduzieren Systemkosten

- Stromrechnung sinkt weiter
- Systemnutzen im Beispiel sieben Mal höher als bei Festpreis

Einsparung durch Heimspeicher (ggü. kein Speicher)

Haushaltsnahe Flexibilitäten nutzen

Wie Elektrofahrzeuge, Wärmepumpen und Co. die Stromkosten für alle senken können

Philipp Godron, Niklas Jooß
16. Juli 2024

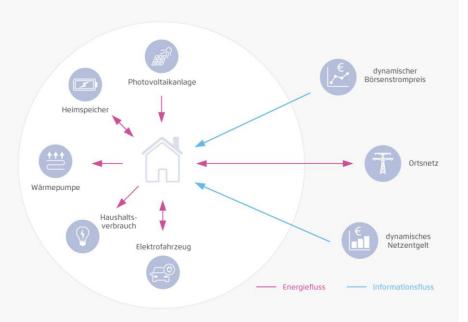
Agora Energiewende hat die Auswirkungen von vier Stromtarifmodellen auf die Betriebsweise haushaltsnaher Flexibilitäten untersucht.

Die Studie: Haushaltsnahe Flexibilitäten nutzen

- → Forschungsstelle für Energiewirtschaft e. V. (FfE) hat detaillierte Netzmodellierungen vorgenommen
- → mithilfe von Typnetzen wurde die gesamte deutsche Niederspannungsebene abgebildet, an der Haushalte angeschlossen sind
- → Lastflusssimulation zur Bestimmung der Netzausbaubedarfe unter Berücksichtigung von vier Tarifmodellen
- → Modellierungsergebnisse wurden ergänzt durch eine Gesamtsystemkostenbetrachtung von Agora Energiewende
- → regelmäßiger Austausch mit einem **Begleitkreis** besetzt mit Vertreter:innen der Energiewirtschaft (Verteilnetzbetreiber, Aggregatoren, Hersteller)

Ergebnisse auf einen Blick:

- E-Autos, Wärmepumpen und Heimspeicher können allein im Jahr 2035 100 Terawattstunden Stromnachfrage flexibilisieren und dadurch im Stromsystem 4,8 Milliarden Euro einsparen.
- 2 Dynamische Stromtarife (inkl. dynamischer Netzentgelte) aktivieren haushaltsnahe Flexibilitäten und reduzieren gleichzeitig den Ausbaubedarf der Stromnetze.
- 3 Die Digitalisierung der Verteilnetze ermöglicht eine Einführung dynamischer Stromtarife (inkl. dynamischer Netzentgelte).
- 4 Verbraucher:innen sparen bei der Stromrechnung und können die Energiewende aktiv mitgestalten.



Methodik

Modellierung der Auswirkungen einer Integration von haushaltsnaher Flexibilität im Verteilnetz.

Übersicht der finanziellen Optimierung am Hausanschluss

- → Charakteristik des deutschen Niederspannungsnetzes wurde mit Hilfe von Typnetzen abgebildet
- → haushaltsnahe Flexibilitäten wurden räumlich zugeordnet, orientiert an den Hochlaufzahlen der Agora-Studie Klimaneutrales Stromsystem 2035.
- → detaillierte Teilnahmequoten wurden festgelegt und eine finanzielle Optimierung an jedem Hausanschluss modelliert
- → Lastflusssimulation zur Bestimmung der Netzausbaubedarfe wurde unter Berücksichtigung von vier Tarifmodellen vorgenommen
- → Auswirkungen des Netzengpassmanagements nach § 14a EnWG auf den Netzausbaubedarf wurden ebenfalls modelliert

Die vier Tarifmodelle unterscheiden sich darin, wie stark sie den aktuellen Börsenstrompreis beziehungsweise die Netzauslastung berücksichtigen.

Zusammensetzung der dynamischen Stromtarife je Szenario

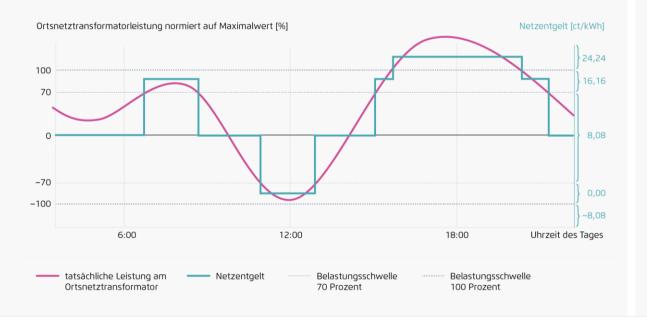
Szenario	Beschaffungspreis	Netzentgelte	Zeitfenster der Netzentgelte
lowFlex	konstant	konstant	_
Flex	dynamisch*	konstant	_
Flex-zeitvarNe	dynamisch*	zeitvariabel	statisch
Flex-dynNe	dynamisch*	zeitvariabel	dynamisch

Zeitvariable Netzentgelte:

- Zeitfenster werden lange zuvor definiert
- Preiszeitreihe variiert zw. verschiedenen Tagen,
 Regionen, Jahreszeiten; in einem Verteilnetz gleich
- ähnlich Preismodul 3 bei §14a Festlegung

Dynamische Netzentgelte:

- Zeitfenster werden kurzfristig definiert
- Preiszeitreihe ergibt sich aus Auslastungsprognose am Ortsnetztransformator
- gem. BNetzA-Film = volldynamische Netzentgelte

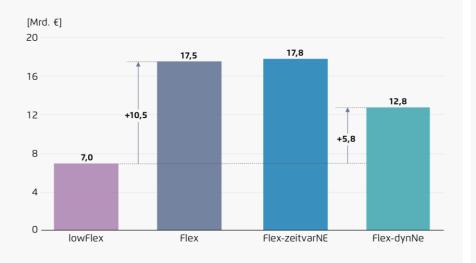

^{*}dynamischer Beschaffungspreis = direkte Weitergabe des Börsenstrompreises. Dafür werden Dispatch-Preise aus der Studie Klimaneutrales Stromsystem 2035 verwendet, welche als Repräsentant der kurzfristigen Börsenstrompreise eingesetzt werden.

Dynamische Netzentgelte spiegeln die lokale Netzauslastung wirkungsvoll wider.

Schematische Darstellung der Bestimmung der dynamischen Netzentgelte in Abhängigkeit der Ortsnetztransformatorauslastung

Dynamische Netzentgelte

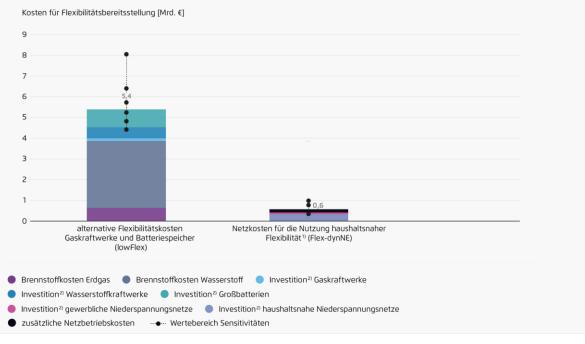
- → Basis: Auslastungsprognose des Ortsnetztransformators
- → Inputparameter:
 - Messwerte des Transformators
 - Verbrauchsfahrpläne bzw. prognosen der Kund:innen,
 - Wetterdaten
 - Börsenstrompreis
- → Netzentgeltstufen in angemessenem Verhältnis zum mittleren Börsenstrompreis-Spread



Ergebnisse

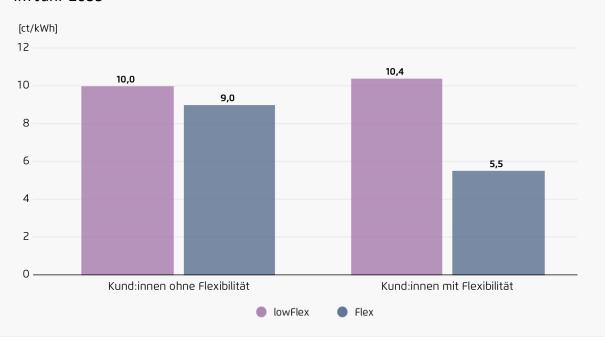
Beim Hochlauf von E-Autos, Wärmepumpen und Heimspeichern können dynamische Netzentgelte wirksam die Netzausbaukosten reduzieren.

<u>Kumulierte</u> Netzausbaukosten in der Niederspannung bis zum Jahr 2035


- → Zusätzliche Nachfrage führt in allen Fällen zu höheren Netzausbaukosten, auch wenn es keine Preisanreize für Flexibilitätsbereitstellung gibt
- → Lastverschiebung, angereizt allein durch dynamisches Börsenstrompreissignal -> deutlich höhere Ausbaukosten
- → Dynamische Stromtarife + dynamische Netzentgelte reduzieren Ausbaukosten erheblich
- → Zeitvariable Netzentgelte:
 - langfristig nicht geeignet zur Reduktion Netzausbaukosten
 - können aber erster Schritt Richtung Umsetzung dynamischer Netzentgelte sein

Dynamische Stromtarife können Flexibilität weitaus günstiger bereitstellen als flexible Erzeugungsanlagen.

Annuitätischer Kostenvergleich der Optionen zur Flexibilitätsbereitstellung in 2035


- → Nutzung von Lastflexibilität der Haushalte
 - spart 20 Terawattstunden Erzeugung / Jahr
 - verringert Bedarf an teurem **Brennstoff**
 - erhöht Verteilnetz-Ausbaubedarf
 - Mehrkosten durch dynamische Netzentgelte begrenzt
- → Allein im Jahr 2035 Ersparnis von 4,8 Milliarden Euro

Von der Aktivierung haushaltsnaher Flexibilität profitieren alle Kund:innen.

Durchschnittliche Beschaffungspreise von Kund:innen mit und ohne Flexibilität im Jahr 2035

- → Aktivieren von Flexibilitäten reduziert Strombeschaffungspreis für alle Kund innen
- → Kund innen mit flexiblem Verbrauchsverhalten sparen zusätzlich Netzentgelte in Höhe von 11 Prozent je Kilowattstunde
- → 4-Personen-Haushalt mit flexiblem Einsatz der Wärmepumpe kann mit dynamischen Stromtarifen (inkl. dynamischen Netzentgelten) perspektivisch 600 Euro/a sparen
- → Alle Kund:innen profitieren von niedrigeren Netzausbaukosten und einer besseren Netzauslastung

Die Einführung dynamischer Netzentgelte lohnt sich. BNetzA und VNB sollten Prozess einleiten für breite Anwendung in 2030er Jahren.

Haushaltsnahe Flexibilitäten:

Elektrofahrzeuge Wärmepumpen Heimspeicher

Dynamische Stromtarife:

dynamische Beschaffungspreise

> € A CEE Börsenstrompreis

dynamische Netzentgelte

Verbraucher:innen leisten einen wertvollen Beitrag zur effizienten Integration von Wind- und Solarstrom und profitieren

Aktivieren

Großes Flexibilitätspotenzial von Haushalten

Zeitlich verschiebbarer Verbrauch im Jahr 2035

100 TWh

Reduzieren

Geringerer Bedarf an Gas- und H₂-Kraftwerken

Netto-Einsparung im Jahr 2035

4,8 Mrd €

Entlasten

Effiziente Entlastung der Verteilnetze

Reduktion Netzausbau* bis zum Jahr 2035

-45 Prozent

Sparen

Eine niedrigere Stromrechnung für Kund:innen

Einsparung für flexible Haushalte im Jahr 2035

-600 €/Jahr

Vielen Dank für Ihre Aufmerksamkeit!

Haben Sie Fragen oder Anmerkungen?

Philipp Godron philipp.godron@agora-energiewende.de

Niklas Jooß njooss@ffe.de

www.agora-energiewende.de